The conventions in the following pages have been agreed, and approved, by the Non-Domestic Energy Performance Certificate (NDEPC) Conventions Group. Membership of the group is open to all accreditation schemes as part of the on-going work to standardise the assessment process, and to ensure a uniformity of approach, that will assist accreditation schemes and energy assessors. The Group has been set up with the approval of DCLG.

These conventions (issue 2.0), which apply to assessments in England and Wales only, have been sent to you by your Accreditation Scheme and must be applied by all NDEPC accredited energy assessors. This also applies to those assessors currently in training. To enable schemes, training providers and assessors to manage the implementation process successfully please note that not all conventions are being applied on the same date. For audit and management purposes, the conventions must be applied on the dates shown in the 'Implementation Date' column on the right-hand side of the table. These conventions will be included as part of future quality assurance checks of the assessments you have undertaken, and the EPCs you have produced, thereafter.

The conventions are designed to improve the quality and accuracy of NDEPC. The conventions will, therefore, supersede any previous assessment process including the iSBEM manual. With this in mind, further conventions are being discussed and developed by the Conventions Group and these will be released to you in stages.

If you have any questions about the conventions, you must feed them back to your Accreditation Scheme so the issue you have raised, where appropriate, can be discussed at a future meeting of the Conventions Group. The conventions must be applied as issued, even if you believe there may be a convention that requires further clarification, until such time as the Conventions Group have had the opportunity to discuss the issue you have raised in more detail. Any subsequent changes to the conventions will then be circulated to all NDEPC assessors.

<table>
<thead>
<tr>
<th>Ref</th>
<th>Issue</th>
<th>Convention</th>
<th>Implementation date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fundamentals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>General Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.01</td>
<td>Assessment level</td>
<td>Refer to assessment level decision flowchart and notes – (Issue 1 1st June 2010) amended in issue 2</td>
<td>17th January 2011</td>
</tr>
<tr>
<td>2.02</td>
<td>Use of defaults</td>
<td>The energy assessor shall only use the default values within the Software Tool in the absence of any conventions identified within this document or more specific information on the building. Where a default value is selected the assessor must provide evidence detailing why the default value has been selected to enable their Accreditation Scheme to verify appropriate use of default values during Quality Assurance processes.</td>
<td>1st June 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>2.03</td>
<td>Air permeability</td>
<td>The SBEM default value of 25 m³/hr m² for all existing buildings shall be amended as follows: Less than 10 m³/hr m² – only with an accredited air pressure test result 10 m³/hr m² – buildings > 500 m² built to 2002 Building Regulations 15 m³/hr m² – buildings <= 500 m² built to 2002 Building Regulations and buildings built to 1995 Building Regulations 25 m³/hr m² – buildings built to Building Regulations pre 1995 35 m³/hr m² – to be considered where buildings are pre 1995 regulations and where suitable evidence of high permeability exists, e.g. single skin metal clad structure within Planning Use Class B2 – B8 with large roller shutter doors and poor constructional details etc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1st June 2010</td>
<td></td>
</tr>
<tr>
<td>3.01</td>
<td>Light pipes</td>
<td>Light pipes and similar devices to be ignored. (previously referred to as sun pipes)</td>
<td></td>
</tr>
<tr>
<td>3.02</td>
<td>Adjacency - party walls</td>
<td>Unless evidence to the contrary is readily and easily available, all buildings adjoining that building or part building which is being assessed, are assumed to be conditioned unless they are of Planning Class B2 to B8 in which case they are assumed to be unconditioned.</td>
<td></td>
</tr>
<tr>
<td>3.03</td>
<td>Frame factor</td>
<td>The ‘Frame Factor’ within SBEM is set at 10% by default. The assessor should amend this figure where appropriate.</td>
<td></td>
</tr>
<tr>
<td>3.04</td>
<td>Car parks</td>
<td>The following should be used in SBEM v3.5 to define an enclosed or underground car park which has mechanical ventilation and therefore requires either its own EPC or inclusion in an EPC. The activity must be set to “circulation”, the HVAC system must be set to “Zones without HVAC system” and the mechanical supply/extract system or the mechanical exhaust system must be used to enter the required “Ventilation” or “exhaust” via the zone level tabs.</td>
<td></td>
</tr>
</tbody>
</table>
| 3.05 | Inadequate or no fixed building services in existing buildings. | Where there are inadequate or no fixed building services, in an existing building, the following guidance should be followed as appropriate. Note: where the building and fit out meet the **first fit out** definition in Approved Document L2A then the guidance in that document must be followed. The following guidance is therefore applicable only for existing buildings which have already had services installed and to which the term **subsequent fit out** would apply. 1. Where there is clear physical evidence of a previous HVAC system then it is appropriate to select the same HVAC system as previously installed and to use the Non Domestic Building Services Compliance Guide (NDBSCG) to obtain suitable minimum efficiency values for the ‘Effective Heat Generating Seasonal Efficiency’ and where applicable the ‘Generator Seasonal Efficiency’.
Energy Efficiency Ratio’ (SEER) and ‘Generator Nominal Energy Efficiency Ratio’ (EER).

2. Where there is evidence that new services have been ordered or that they have been delivered but not installed then these will not be considered fixed building services and their detail will not be used in the EPC. The following assumed fit out guidance will be followed.

<table>
<thead>
<tr>
<th>3.06</th>
<th>Assumed ‘subsequent fit out’ for existing buildings. (to be read in conjunction with 3.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Where there are no existing fixed building services or evidence of a previous HVAC system the assumed HVAC system will always be a ‘system’ of fanned electric room heaters with an ‘Effective Heat Generating Seasonal Efficiency’ of 100% and a local cooling system with a EER and SEER of 2.5. The assumed HVAC system will be applied to all zones in the building where there is an expectation of conditioning. For the following zones it is appropriate to only apply the heating ‘system’ of fanned electric room heaters with an ‘Effective Heat Generating Seasonal Efficiency’ of 100%: ‘24x7 warehouse storage*’, ‘domestic bathroom’, ‘domestic bedroom’, ‘domestic circulation’, ‘domestic dining room’, ‘domestic kitchen’, ‘domestic lounge’, ‘domestic toilet’, ‘dry sports hall’, ‘heavy plant room*’, ‘industrial process area’, ‘light plant room’, ‘warehouse storage’, ‘workshop small scale’ and ‘plant room**’. * only available in v4 ** only available in v3.5</td>
</tr>
</tbody>
</table>

4. Geometry

<table>
<thead>
<tr>
<th>4.01</th>
<th>Light wells</th>
<th>Light wells to be treated as external envelopes.</th>
<th>1st June 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.02</td>
<td>Atria</td>
<td>All atria to be treated as Level 5 NDEPC assessment feature. Refer to accompanying Level 3, Level 4 and Level 5 decision flowchart and notes (Issue 1 – 15 March 2010).</td>
<td>1st June 2010</td>
</tr>
<tr>
<td>4.03</td>
<td>Dimensions</td>
<td>Horizontal and vertical (inc. zone height) measurements to be carried out in accordance with diagrams and notes in ‘CEPC Dimension Conventions’ documentation.</td>
<td>1st June 2010</td>
</tr>
</tbody>
</table>

5. Global Building Services

6. HVAC

<table>
<thead>
<tr>
<th>6.01</th>
<th>Variable speed pumps other than central heating</th>
<th>Ignored unless using approved DSM software which allows for this input option.</th>
<th>1st June 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.02</td>
<td>Passive stack ventilation</td>
<td>Treat as per natural ventilation</td>
<td>1st June 2010</td>
</tr>
<tr>
<td>6.03</td>
<td>Electric room heaters</td>
<td>Any form of fanned or unfanned electric ‘room heater’ whether panel, bar, convector or storage heater shall have a user amended efficiency of 100%.</td>
<td>1st June 2010</td>
</tr>
</tbody>
</table>
6.04 LTHW boiler efficiencies

The following hierarchy should be followed to establish suitable values for the 'Effective Heat Generating Seasonal Efficiency' for all boilers.

1. Use ECA product list part load values at 30% and 100%* - these should be used to calculate the seasonal efficiency as per the Non Domestic Building Services Compliance Guide (NDBSCG).
2. Use ECA product list full load value* (when part load values are not given)
3. Use current SEDBUK values where available.
4. Use either manufacturer's information* or 'boiler plate'** information or information from manufacturer's technical helpdesk*. Where a gross efficiency value is established for a non condensing boiler then a deduction of 5% should be made to it to convert it to an appropriate seasonal efficiency.
5. Use SAP tables (up to 70kW output).
6. Use suitable SBEM default; it is essential for the site notes to provide evidence as to why the above methods were not used to obtain a more accurate value, i.e. by providing evidence of failed attempts.

In addition to any boiler efficiency values established from the above the relevant heating credits should be added by following the guidance in the NDBSCG.

*Net efficiencies/values must be converted to gross efficiencies as per the NDBSCG.

6.05 Electric HWS with and without storage

Where an **electric system** has no storage then it should be entered as an *instantaneous system* with grid supplied electricity as its fuel and a seasonal efficiency of 100%.

Where an **electric system** has some/any storage then *electric instantaneous system* should NOT be used and *Stand-alone water heater* should be used. Where such a system also has its losses or volume and insulation details entered then the efficiency of the system should be 100%.

6.06 HWS efficiencies and storage losses

The presence of storage/losses **MUST** be entered for all storage systems and this should be done where possible by entering the losses (in MJ/month) in preference to the volume and insulation type and thickness. The source information (such as manufacturer's data) and/or calculation must be included in site notes.

Where losses can not be established then the volume and insulation details should be entered.

- Where the volume can not be readily established via external visual inspection and/or paperwork it should be estimated as follows: the external dimensions of the unit will be used as if the storage vessel completely fills the unit with no deduction for insulation thickness.
- Where the insulation type can not be readily established via survey and/or paperwork it should be assumed to be uninsulated.

Where details of the HWS are unavailable or there is no system then the HWS shall be entered
as an *instantaneous system* with no storage with a seasonal efficiency of 50%. Where the fuel type can be readily determined then the appropriate fuel type must be entered otherwise ‘grid electric’ should be assumed.

| 6.07 | Estimating Local Mechanical Exhaust rates in existing buildings | Where it is not possible to obtain details of the fan performance from the Fan nameplate or Building Logbook, O & M manual etc during the Site Survey, an approximation of the air flow rate in l s\(^{-1}\) m\(^{-2}\) (often written as l/s/m\(^{2}\) in SBEM) can be established by using an appropriate ventilation rate from the attached table (Local Mechanical Exhaust and Ventilation Rates) and converting this to l s\(^{-1}\) m\(^{-2}\).

It is not acceptable to use an arbitrary value such as 5 l s\(^{-1}\) m\(^{-2}\) or a software applied default for extraction rates where the mechanical extraction rate is unknown.

| 6.08 | Estimating the Specific Fan Power (SFP) in existing buildings | Where the fan power motor can be established from the fan nameplate or Building Logbook, O & M manual etc during the site survey the established power will be used to calculate the SFP. If the power rating of a fan is known in horsepower then it shall be converted using the approximation of 1 horsepower = 746 Watts.

Where the power rating of the fan is not established then the SBEM defaults will have to be used.

| 7. Lighting | Lighting options in SBEM | If a building’s original lighting design is available, and there is no discrepancy between that and the observed lighting within the building, the wattage and lux values, from that design, should be entered using the ‘Full lighting design carried out’ option in SBEM. If complimentary values are not available (i.e. both values from the same lighting design) the lighting design(s) must not be used.

If the circuit wattage and lux levels can be accurately recorded by the assessor (see Use of Lux Level Meters 7.02) the option for ‘Full lighting design carried out’ should also be used and the appropriate values entered. Wattage and lux values must not be entered separately nor is it acceptable to input assumed wattage or lux values from BSRIA publications or other reference documents or to accept or use a software suggested default value.

If the circuit wattage and lux values cannot be ascertained by either of the above methods it may be possible to use the ‘Lighting chosen but calculation not carried out’ option where the lumens per circuit wattage must be entered, calculated in line with building regulations guidance. This may not be possible for all zone activity selections. The evidence of how the values for lamp lumens and circuit wattage must be provided in the site notes.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.02</td>
<td>Use of lux level meters</td>
<td>Lux level readings, taken by an assessor, may only be used for the production of an EPC if the readings have been recorded in line with the Society of Light & Lighting’s Code for Lighting 2009. Evidence of achieving a complete blackout of windows and the required calculations to establish the grid size for the measurements taken must be provided. 17th January 2011</td>
</tr>
<tr>
<td>7.03</td>
<td>Mixed lighting in a zone in SBEM</td>
<td>Where a zone contains both general lighting and display lighting, and for the selected activity SBEM assumes the presence of display lamps, then the display lighting and the general lighting must be entered as ‘display’ and ‘general’ lighting respectively. Where a zone contains both general lighting and display lighting, and for the selected activity SBEM does not assume the presence of display lamps, then the zone must be subdivided to create additional ‘display’ zones to represent the display lighting. A suitable ‘display’ activity should be used for the ‘display’ zones and appropriate lighting entries entered. The remains of the original zone must have the original activity and only the general lighting is entered into the zone(s). Where a zone contains a mixture of lamp types providing general lighting (no display lighting) across the entire zone, such that simply splitting the zone to reflect the lamp’s locations is not practicable, then the following method should be followed: 1. The proportion of the zone’s area lit by each lamp type should be established. 2. The zone should then be split into a number of zones to match the number of lamp types and for each lamp type the relevant proportion of the zone area and all of the zone’s envelopes, including glazing, should be entered into each relevant zone along with the appropriate respective lamp type. 17th January 2011</td>
</tr>
<tr>
<td>7.04</td>
<td>Display lighting</td>
<td>Where zones incorporate an activity whereby SBEM automatically assumes the presence of display lighting but none is actually present, the display lighting efficiency for SBEM shall be entered such that it is the same as that of the general lighting present in that zone. Where possible this should be calculated but as this requires detailed measurements of the lm and cW this is not usually practical in existing buildings. The following ‘default’ values should therefore be used: 1. For all general lamp types except Tungsten or Tungsten Halogen; you must enter that the display lighting uses efficient lamps and enter 50lm/cW in the relevant Lumens per circuit wattage box. 2. For Tungsten or Tungsten Halogen general lamps; you do not enter that the display lighting uses efficient lamps and you do not have to enter a value in the Lumens per circuit wattage box. 17th January 2011</td>
</tr>
</tbody>
</table>
| 10.01 | Commercial EPC Conventions | Glossary of Terms – Issue 1
Updated Glossary of terms – issue 2 | 1st June 2010
17th January 2011 |
Glossary of Terms

Air Permeability.
Air permeability is expressed as volume flow per hour (m\(^3\) h\(^{-1}\)) of air supplied to the space per square metre (m\(^2\)) of envelope area for an internal to external pressure difference of 50 Pa i.e. 25 m\(^3\) hr\(^{-1}\) m\(^{-2}\) at 50Pa.

Atrium
In this context, a non-continuously occupied interior space within a building, often several stories high, bounded on at least one side by occupied spaces set to the conditions determined from the activity database. There may or may not be building elements (such as glazing) surrounding the atrium (although there may need to be something for smoke control in case of fire). The atrium itself is not maintained to the conditions set by the activity database for adjoining spaces. The technical purpose of the atrium can be one or more of the following:-

- Providing a buffer between the thermal conditions in the adjoining spaces and the exterior, to reduce the direct impact of the exterior on those zones. In this case it should not be maintained to conditions as though it is occupied. (If it is conditioned and the features below do not apply, in this context it is not considered to be an atrium.)
- Providing a means for daylight to reach the middle of deep plan spaces that would otherwise not receive it
- Encouraging stack effect or other passive ventilation to draw extract air from the adjoining spaces.

Automatic Blind Control
In this context internal or inter-pane (but not exterior) blinds that are motorised so that the position can be modified to control solar heat gain and/or glare, controlled by automatic sensors. The control regime must also open the blinds as the heat gain and or daylight levels decrease, so that the use of these natural resources can be optimised for each zone. Note that exterior shading devices can be modelled using iSBEM in the definition of each window; however SBEM currently does not model the re-radiation effects of blinds where solar gain has entered the space before it is modulated by the shading device.

Demand Controlled Ventilation
Is defined as supply and/or extract ventilation that is modulated to match the needs of the actual occupation level of each zone, rather than operating at a constant level defined by the activity database. Thus the energy required to adjust the condition of the supply air and that required to move the air can be reduced. The rate of ventilation would typically be controlled by presence detectors, CO\(_2\) sensors or another device that senses the varying requirement.

Fixed Building Services
Are those which are directly attached or connected to the building and cannot be removed/disconnected without the use of tools. A portable electric heater with a plug allowing it to be removed from the building without the use of tools is not considered a fixed building service. Although the presence of such a system clearly shows there is an expectation of conditioning and an EPC is required.

Lightwell
A lightwell is a space surrounded by the walls of a building but that has no roof or glazing above it. It is therefore similar to a courtyard in appearance. The walls that surround the lightwell are exposed to external air.
Night Ventilation Strategy
Can be defined as the presence of suitable systems, controls and operating strategy such that overnight ventilation (passive and/or mechanical) is used to cool down the exposed building mass and thereby offset daytime cooling demands. If no such operation and subsequent offset is possible through the automatic operation of systems and controls then night ventilation strategy is deemed to be not present as part of the building energy asset rating.

Light Pipes
A light pipe is a tube/pipe, consisting of internal reflective surfaces, which channels daylight to an internal area.

Ventilation with Enhanced Thermal Coupling to Structure
This is a further development of the Night Ventilation strategy such that significant components of the building structure in addition to its ordinary surfaces are exposed to night ventilation, in order to enhance the building's capability of offsetting daytime cooling demands. An example of this procedure is the TermoDeck system where night ventilation is passed through ducts in the solid floors of the building, thereby increasing the 'coolth' contained in the thermal capacity of the building structure available to offset subsequent summertime daytime cooling loads.

Variable Speed Drive systems
HVAC system designs are increasingly incorporating variable speed drives (VSDs) to provide control, and reduce the energy consumption of, the motors on fans and pumps.

The term Variable-Speed Drive describes the equipment used to control the speed of pumps, fans and compressors. Variable speed drives may be purely mechanical, electromechanical, hydraulic, or electronic. It is generally accepted that variable speed pumping systems offer significant benefits compared to constant flow systems.

For alternating current (AC) electric motors this is achieved by controlling the frequency and/or voltage of the electrical power supplied to the motor. As the motor reduces the operating speed of the fan, pump or compressor the power required to operate the system is greatly reduced.
Commercial EPC Delivery - Assessment Level Decision Flow Chart

START

Are any of the following features present to any degree in the building?
- a) Night ventilation strategy
- b) Ventilation with enhanced thermal coupling to structure
- c) Demand controlled ventilation
- d) Automatic blind control
- e) Atria

NO

Are any of the following HVAC supply/distribution types present to any degree in the building?
- a) Medium temperature hot water (MTHW)
- b) High temperature hot water (HTHW)
- c) Steam distribution

NO

Are any of the following air conditioning system types present to any degree within the building?
- a) Variable air volume (VAV) - single duct
- b) VAV - dual duct
- c) VAV - indoor packaged cabinet
- d) Fan coil systems - 2, 3 or 4 pipe and changeover or non-changeover
- e) Induction systems
- f) Constant volume systems (CVS) - fixed or variable fresh air rate
- g) Multi-zone (hot deck / cold deck) systems
- h) Constant volume systems - terminal reheat
- i) Constant volume systems - dual duct
- j) Chilled ceilings or passive chilled beams plus displacement ventilation
- k) Active chilled beams
- l) Water loop heat pump systems e.g. Versatemp

NO

Is there an air conditioning system present that incorporates centralised air supply as an integral component?

YES

A Level 4 assessment is therefore required

NO

Is the energy assessment being carried out for Building Regulations compliance purposes, e.g. new build?

YES

A Level 4 assessment is therefore required

NO

A Level 3 assessment can therefore be carried out

Assessment Level Decision Flow Chart: Accompanying Notes
Night Ventilation Strategy

Can be defined as the presence of suitable systems, controls and operating strategy such that overnight ventilation (passive and/or mechanical) is used to cool down the exposed building mass and thereby offset daytime cooling demands. If no such operation and subsequent offset is possible through the automatic operation of systems and controls then night ventilation strategy is deemed to be not present as part of the building energy asset rating.

Ventilation with Enhanced Thermal Coupling to Structure

This is a further development of the Night Ventilation strategy such that significant components of the building structure in addition to its ordinary surfaces are exposed to night ventilation, in order to enhance the building's capability of offsetting daytime cooling demands. An example of this procedure is the ThermoDeck system where night ventilation is passed through ducts in the solid floors of the building, thereby increasing the 'coolth' contained in the thermal capacity of the building structure available to offset subsequent summertime daytime cooling loads.

Demand Controlled Ventilation

Is defined as supply and/or extract ventilation that is modulated to match the needs of the actual occupation level of each zone, rather than operating at a constant level defined by the activity database. Thus the energy required to adjust the condition of the supply air and that required to move the air can be reduced. The rate of ventilation would typically be controlled by presence detectors, CO₂ sensors or another device that senses the varying requirement.

Automatic Blind Control

In this context internal or inter-pane (but not exterior) blinds that are motorised so that the position can be modified to control solar heat gain and/or glare, controlled by automatic sensors. The control regime must also open the blinds as the heat gain and or daylight levels decrease, so that the use of these natural resources can be optimised for each zone. Note that exterior shading devices can be modelled using ISBEM in the definition of each window; however SBEM currently does not model the re-radiation effects of blinds where solar gain has entered the space before it is modulated by the shading device.

Atrium

In this context, a non-continuously occupied interior space within a building, often several stories high, bounded on at least one side by occupied spaces set to the conditions determined from the activity database. There may or may not be building elements (such as glazing) surrounding the atrium (although there may need to be something for smoke control in case of fire). The atrium itself is not maintained to the conditions set by the activity database for adjoining spaces. The technical purpose of the atrium can be one or more of the following :-

- providing a buffer between the thermal conditions in the adjoining spaces and the exterior, to reduce the direct impact of the exterior on those zones. In this case it should not be maintained to conditions as though it is occupied. (If it is conditioned and the features below do not apply, in this context it is not considered to be an atrium.)
- providing a means for daylight to reach the middle of deep plan spaces that would otherwise not receive it
- encouraging stack effect or other passive ventilation to draw extract air from the adjoining spaces.

Dimensions Convention
Consider

- Plan view of two buildings in a terrace
 - Separated by a party wall
 - Building 1 has two zones
- Wall types
 - “Perimeter” surrounds each building (external and party walls)
 - “Internal” refers to walls within each building (partitions)

Generally follow RICS definition of Gross Internal Area

Need to measure

- Inside perimeter walls
- Mid point of internal walls
- Party walls are perimeter, so measure to surface, not mid point

Openings

- Inside structural opening (w x h)
- Not just glass area
- Percentage glazing is as viewed from inside
 - i.e. percentage of wall area to full zone height (defined below)

- 100% Glazing
 - Enter a wall of total area
 - Enter glazing with same area (or as 100%)

Zone height and element areas

Generally zone height is top of slab to top of slab for ground and intermediate floors, or soffit/eaves level at roof level

- For ground and intermediate floors
 - Zone height is top of floor to top of floor

- For top floors with flat roof
 - Zone height is top of floor to soffit/underside of roof slab

Dimensions Convention (continued)
Non Domestic EPC Conventions for E & W Issue 2.0: 17 Jan 2011

- For top floors with pitched roof but flat ceiling
 - Zone height is top of floor to underside of soffit/eaves level
 - U value is from under ceiling to outside roof including insulation wherever it is
 - that is, consistent with the area being entered
 - Area of gable wall is that below soffit/eaves level i.e. length \(L_4 \times h_4 \)

- For top floors with pitched roof and dropped ceiling with or without insulation at ceiling level
 - Zone height (\(h_4 \)) is top of floor to underside of soffit/eaves level (not ceiling)
 - U value is from under ceiling to outside roof
 - Side and end wall areas are calculated to soffit/eaves level i.e. dropped ceiling is treated as though it is at soffit/eaves level

- For rooms with pitched ceiling (e.g. where ceiling is fixed in line of pitched roof)
 - Zone height (\(h_4 \)) is top of floor to underside of soffit/eaves level (not average room height)
 - Roof heat loss area is as seen from underside of ceiling, i.e. \(L_r \times d \) (zone depth)
 - U value is from under ceiling to outside roof (\(U_r \))
 - End wall area is whole gable up to roof apex (as this is all exposed to inside temperature)

- If there is a horizontal ceiling half way up the pitched roof, split the area into
 - The part with a void \((L_{r1}) \), using the U-value including the void \((U_{r1}) \)
 - The part where there is no void \((L_{r2}, L_{r3}) \), using the U-value without a void \((U_{r2}) \)
 - Zone height is still to underside of soffit/eaves level

So the general rule is always to input the area exposed to the inside temperature, and the U-value between this surface and outside.
• Intermediate floors with suspended ceilings and raised floors

 - Zone height is top of floor slab to top of next floor slab e.g. \(h_1 \)
 - So, ignore the suspended ceilings and raised floors for the purposes of
 • zone height
 • surrounding wall areas
 - But include their impact on Kappa values of the slabs above and below so that thermal mass effects are calculated correctly

• With suspended timber ground floor and ventilated void below

 - Zone height is top of suspended floor surface to top of first floor surface (\(h_{sf} \))
 - Where the floor U value is calculated it should take account of the ventilated void (\(U_{sf} \))

When there are walls of different heights to consider:

• For sloping floors and ceilings (eg auditoria)

 - If the activity above and under the floor is the same, or the void is inaccessible, choose normal zone height, otherwise
 - zone height = weighted average external wall height \(h_{a1}, h_{a2}, h_{a3}, \) etc (from where floor adjoins each wall to top of floor above)
 - Zone area \(A_a \) is projected area/plan area as per RICS GIA standard
 - Make sure in addition that all external (and internal) wall and slab areas are input so that all heat loss/gain and thermal mass is calculated
 - **Note that zoning for daylit areas must be carried out manually in these circumstances (do not use automatic daylight zoning)**

• For cubical rooms under the sloping floor

 - Zone height = top of slab to top of slab (\(h_s \))
Non Domestic EPC Conventions for E & W Issue 2.0: 17 Jan 2011

Dimensions Convention (continued)

- For rooms with mono-pitched ceiling
 - Zone height is top of floor to weighted average height of all external walls - \(h_{4av} \)
 - Area of roof (\(A_r \)) is as seen from underside i.e. \(L_r \) x zone depth
 - U value from under ceiling to outside roof is \(U_r \)
 - Use total area of external gable wall
 - *Note that zoning for daylit areas must be carried out manually in these circumstances*

- If there is a horizontal ceiling under the mono-pitched roof
 - Level with or below eaves: zone height at eaves
 - Above eaves: zone height = average exposed wall height
 - Roof area would have to be divided into areas with different U-values with and without void

- **Curved roof** – all buildings with curved roof sections shall be approximated as in the diagram:
 - Circular (not elliptical or other shapes)
 - Semi-circular so that width = 2 x height

- Walls are 70-90° from horizontal, roofs are <70°
- So zone height \(h_{cw} \) = dividing point between wall and roof, where slope = 70° at “eaves”

- If a floor (eg as shown dotted) meets roof at <70°, there is no wall, so zone height \(h_{cr} \) = average height of space

- If the dotted line represents the ceiling with an unoccupied void above, remember to input
 - the area of roof where the slope < 70° between this ceiling and the “eaves”, with its U value (\(U_{rc} \)), and
 - the flat ceiling with U value (\(U_{clg} \)) including the void above the ceiling

- Treat dormer windows the same as for a room in a pitched roof (see below)

For consistency, the convention is to assume all such roofs are semi-circular.
If floor width = \(L_c \) and building depth is \(d \)

- Zone height \(h_{cw} = 0.171 \times L_c \)
- Wall height \(L_{wc} = 0.175 \times L_c \)
- Area curved walls = \(L_{wc} \times d \times 2 \) (both sides)
- Curved roof width \(L_{rc} = 1.222 \times L_c \)
- Area curved roof = \(L_{rc} \times d \)
• For room in roof (or mansard roof):
 - Areas and U values should correspond
 - U values for walls should include any voids – U_{w1}, U_{w2}
 - Zone height (h_{w1}) = height of vertical part of walls adjacent to exterior
 - If this varies, calculate area weighted average height of external walls

• Where there are dormer windows
 (i.e. window bays that project through the roof)
 - Do not adjust zone height for the dormer windows
 - Zone manually for daylit areas
 (if the glazing > 20% of vertical wall area)
 - Enter the glazing details and areas as normal
 - **Note that zoning for daylit areas must be carried out manually in these circumstances**
Local Mechanical Exhaust and Ventilation Rates

<table>
<thead>
<tr>
<th>Room or Building</th>
<th>Air Changes per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly Rooms</td>
<td>10</td>
</tr>
<tr>
<td>Bakeries</td>
<td>30</td>
</tr>
<tr>
<td>Banks/Building Societies</td>
<td>6</td>
</tr>
<tr>
<td>Bathroom (non domestic) without Shower</td>
<td>8</td>
</tr>
<tr>
<td>Bathroom (non domestic) with Shower</td>
<td>20</td>
</tr>
<tr>
<td>Bathroom (domestic)</td>
<td>10</td>
</tr>
<tr>
<td>Bedrooms</td>
<td>4</td>
</tr>
<tr>
<td>Boiler Rooms</td>
<td>30</td>
</tr>
<tr>
<td>Cafés and Coffee Bars</td>
<td>15</td>
</tr>
<tr>
<td>Canteens</td>
<td>12</td>
</tr>
<tr>
<td>Cellars</td>
<td>10</td>
</tr>
<tr>
<td>Cinemas and Theatres</td>
<td>10</td>
</tr>
<tr>
<td>Club / Games Rooms</td>
<td>10</td>
</tr>
<tr>
<td>Compressor Rooms</td>
<td>20</td>
</tr>
<tr>
<td>Conference Rooms</td>
<td>10</td>
</tr>
<tr>
<td>Dairies</td>
<td>10</td>
</tr>
<tr>
<td>Night Club / Disco</td>
<td>20</td>
</tr>
<tr>
<td>Dye Works</td>
<td>30</td>
</tr>
<tr>
<td>Electroplating Shops</td>
<td>12</td>
</tr>
<tr>
<td>Engine Rooms</td>
<td>30</td>
</tr>
<tr>
<td>Entrance Halls, Corridors</td>
<td>5</td>
</tr>
<tr>
<td>Factories and Workshops</td>
<td>10</td>
</tr>
<tr>
<td>Fitness Centres</td>
<td>12</td>
</tr>
<tr>
<td>Foundries</td>
<td>30</td>
</tr>
<tr>
<td>Garages (workshop)</td>
<td>10</td>
</tr>
<tr>
<td>Glass houses</td>
<td>60</td>
</tr>
<tr>
<td>Hairdressing Salons</td>
<td>15</td>
</tr>
<tr>
<td>Hotel Bars</td>
<td>10</td>
</tr>
<tr>
<td>Kitchens – Non Domestic</td>
<td>40</td>
</tr>
<tr>
<td>Kitchens – Domestic</td>
<td>15</td>
</tr>
<tr>
<td>Laboratories</td>
<td>15</td>
</tr>
<tr>
<td>Laundrettes / Laundries</td>
<td>15</td>
</tr>
<tr>
<td>Lecture Theatres</td>
<td>10</td>
</tr>
<tr>
<td>Libraries</td>
<td>4</td>
</tr>
<tr>
<td>Living Rooms</td>
<td>6</td>
</tr>
<tr>
<td>Meeting Room</td>
<td>10</td>
</tr>
<tr>
<td>Offices</td>
<td>6</td>
</tr>
<tr>
<td>Photo and X-ray Darkrooms</td>
<td>8</td>
</tr>
<tr>
<td>Public House Bars</td>
<td>15</td>
</tr>
<tr>
<td>Recording Studios</td>
<td>12</td>
</tr>
<tr>
<td>Restaurants</td>
<td>15</td>
</tr>
<tr>
<td>Schoolrooms</td>
<td>10 l/s/Person</td>
</tr>
<tr>
<td>Shops and Supermarkets</td>
<td>10</td>
</tr>
<tr>
<td>Sports Hall / Squash Courts / Gymnasiums</td>
<td>6</td>
</tr>
<tr>
<td>Stores and Warehouses</td>
<td>6</td>
</tr>
<tr>
<td>Swimming Pools</td>
<td>10</td>
</tr>
<tr>
<td>Tea Making</td>
<td>10</td>
</tr>
<tr>
<td>Toilets</td>
<td>10</td>
</tr>
<tr>
<td>Utility Rooms</td>
<td>20</td>
</tr>
<tr>
<td>Welding Shops (General Extract)</td>
<td>30</td>
</tr>
</tbody>
</table>